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The energy equation is solved for the case of laminar flow of a com-
pressible Newtonian liquid with allowance for heat of friction. Theo-
retical temperature profiles are presented for flow in channels with
constant and linearly varying capillary wall temperatures. The theo-
retical values of the mean temperature are in good agreement with
the experimental results.

When liquids move through capillaries under a pres-
sure of several tens of atmospheres, the thermal ef-
fects of energy dissipation and compressibility become
appreciable. These phenomena were reviewed in [1],
where it was shown that the magnitudes of both effects
are of the same order and that, in general, in internal
flows the compressibility cannot be neglected.

In the first approximation, in flow through a ther-
mally insulated capillary the average temperature of
the liquid increases by about I° C for each 20—30 atm
of pressure drop.

Under these conditions the simple forms of theequa-
tions of motion and energy, which hold true for flows
in the region of small pressure drops, cease to be
valid. Attention was first drawn to this by Hersey [2],
who correctly attributed the experimentally observed
deviations from the Poiseuille law to the effect of the
heat of friction on the temperature field of the liquid
and hence on its viscosity.

It is customary to distinguish two types of forced
convection: a) adiabatic flow when there is no heat ex-
change with the ambient medium through the capillary
walls; b) flow through an isothermal capillary atwhose
walls the initial (at the channel inlet) temperature of
the liquid is kept constant.

Even recent publications confine themselves, with a
few exceptions, to the problem of temperature distri-
bution and give different variants of solutions of the
energy equation. Some authors propose a solution of
the energy equation that neglects the convection term
[1~6]. Omitting the convective component limits the
applicability of the solution to the region of the steady-
state temperature profile. This region is important in
connection with very long isothermal capillaries, in
which equilibrium has been established between the
dissipative component and the heat transmitted through
the walls (in this case the temperature is a function of
the radius only [1]).

Solutions for incompressible liquids in insulated or
isothermal capillaries with allowance for convection
are offered in [7—11].

Kudryashev and Golovin [12] have examined the ef-
fect of energy dissipation on heat transfer in a laminar
channel flow of incompressible liquid at constant wall
temperature.

Problems of the capillary flow of compressible

‘liquids were first considered by Toor [1]. In [13] the

same author discussed flow through an isothermal cap-
illary with allowence for convection.

The solution proposed by Madejski [14] for a com-
pressible liquid holds true only for a perfect gas [15].
A general mathematical model of laminar flow with al-
lowance for heat of friction and expansion has been
developed by Gee and Lyon [16]. These authors exam-
ined the flow of a non-Newtonian liquid in a heated or
cooled channel with allowance for the variation of the
physical parameters of the liquid. After publication of
the work of Gee and Lyon the problem might have been
considered solved in principle, if the nonlinear differ-
ential equations they obtained had been amenable to
analytic solution. The authors used computers to find
the temperature and velocity profiles as a function of
the radius and length of the channel for several spe-
cific cases, obtaining values that agreed with the ex-
perimental results.

In this paper the problem is again examined by
means of a simplified method based on the indepen-
dence of the solutions of the equations of motion and
energy. This is one of the approaches recommended
by certain authors [17]; it may be regarded as the first
stage of an iteration method.

TEMPERATURE DISTRIBUTION

Formulation of the problem. The energy equation
for a Newtonian liquid with constant thermal conduc-
tivity can be written in one of its alternative forms
[18] as

DT D
Ve =XV2T+T5D—;J + n®, (D

where the coefficient of isobaric thermal expansion

1 dy
p=—- (b’r—)p @)

This is the general equation describing the tempera-
ture distribution for a real, dissipatively heated lig-
uid in the absence of other internal heat sources (sinks).

Equation (1) has been solved on the basis of the fol~
lowing assumptions:

1. The physical parameters of the liquid are con-
stant and do not depend on temperature and pressure
(with the reservation mentioned in item 6).

2. The motion of the liquid has been stabilized.

3. The circumferential and radial components of
velocity can be neglected. The velocity distribution in
cross sections of the channel is parabolic.
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Table 1

Numerical Values of the Characteristic Constants Aj
: k A A A7 A’

| 13 13 13
1 l 7.3153 -1.46622 -40.3360 —0.8020
2 | 44.6090 —0,802476 —0.1254 +0.0719
3 113.921 -+0.587094 -+0.0579 —0.0207
4 ’ 215.241 —0.474897 —0.0330 +0.0139

4. The effect of external forces is neglected.

5. Heat conduction in the direction of the channel
axXis may be disregarded.

6. In accordance with [1] in a certain temperature
interval it is possible to use the mean value of the prod-
uct Tg =¢.

With these assumptions Eq. (1) may be written in
the simplified form [1]

In this paper Eq. (8) has been solved for a Newto-
nian compressible liquid flowing in a capillary with a
constant arbitrary wall temperature and in a capillary
with a wall temperature that varies linearly with
length.

Solution of the equations. A. Wall temperature con-
stant. This case is characterized by the following
boundary conditions:

= = t;
ye,V oT =7~L _g__(raT )+ t(p, 2), T(l, 2)=1,=cons
Ox y Or or 0Lp L, (o, 0) =1y
ap av 2 0Lz (@1) =0 (9)
—_ —_—. 3 2K oo, .
eV 0x p( or ) 3 = 0p /o=0

In Eq. (3) we have taken into account the apprecia-
ble influence of the compressibility of the liquid on the
temperature distribution and have omitted the less im-
portant effect on the velocity and dissipation.

Under these conditions the equation of motion may

Introducing the new variable
8 = (T — 1, )/(Ty — 7o), (10)

we can write Eqgs. (9) in the form

be written in the form a ——-p‘z)ﬁ _
dp 1 d dv 0z
2-tilit)  w
X r r r 4(1 + E)pz . 4g

With the above assumptions Eqgs. (3) and (4) are in-
dependent. Replacing the pressure gradient with the
average pressure drop along the capillary dp/dx =
= (—P/x), on the basis of Egs. (3) and (4) we can write

(11

1 a‘( ae)
=— ——lo——)+
p dp\ . 0dp

In the new notation the boundary conditions are

(To —Ty) (To —Ty)

800, 2, 6(1, 2)=0;
vl ) (7)) 5 - e
# (?):0. (12)
P

2
SV IR N
r or or 4p

2 2 2 2
— Lj L) = _’i)_ (5)
R/ \x 4p \ x
After rearranging and introducing the relative ra-
dius p = r/R, together with Brinkman's relative length

[7]
4hp x 1 x n

= MrE 2 2 T Gyt (6
= rR@Em e R 2O

and the relative temperature

e ST o (Gt (c__ﬁ,w T ) (7
R (Pl P

we obtain the final form of the differential equation of
temperature distribution for laminar flow of a Newto-
nian compressible liquid with allowance for the heat
of friction:

We will find [7, 9] the solution of Eq. (12) in the form
of a sum of two functions

6 =0, +0,, (13)

where 0, is the solution for the case (86/6z) = 0, and
6, is an auxiliary function required to obtain the gen-
eral solution.

The first term is found on the assumption that the
convection term maybe neglected, (96/62) = 0. We then
obtain

. (14)

6 = 1 [(1 4 ) (1 — %) — 46 (1 — p¥)
4 TD_"TM)

Substituting (14) in (13) and then in (11), we reduce
the problem to the classical case of heat transfer in a
laminar flow:

0z p

(1—p? gl — 0 dp
0z
Representing the function 0, in the form of a product
- ,a_(p ﬂ) + 4[(1 4 &) p® —el. (8) : :
p dp\ 0Jp 8, (0, 2) =D (p) ¥ (2),
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Table 2
Numerical Values of the Auxiliary Integrals M and N
- ;
o 1
‘ T Integta $ 1.0 0.5 0.2 0.1 005 0.02 0.01
0 0 M 8.329. 10—2 8.163 6.805 5.140 3.635 2.163 1.410
N 3.124.102 3.075 2.673 2.178 1.699 1.144 8.043-10-3
0.1 0 M 6.663-10—* 6.537 5.501 4.233 3.069 1.885 1.252
N 2.603-10—2 2.260 1.882 1.882 1.506 1.042 7.437.10—3
0.15 0 M 5.831.10—2 5.724 4.851 3.780 2.786 1.746 1,174
N 2.343.10-2 2.311 2.054 1.734 2.409 9.906.10—2 7.134
0.2 0 M 4.998-10—2 4.911 4.200 3.327 2.503 1.607 1.095 .
N 2.083.10—2 2.057 1.847 1.586 1.312 9.396-10—2 6.831
0.3 0 M 3.332.10~2 3.285 2.899 2.420 1.937 1.329 9.368.103
N 1.562-10—2 1.548 1.434 1.289 1.118 8.376.10—2 6.226
0.4 0 M 1.666-10—2 1.659 1.597 1.513 1.372 1.051 7.790- 108
N 1.042.10-2 1.039 1.021 9.931.10—3 9.248 7.356 5.620
0.5 ) M 8.501-10- 3.296. 10— 2.958.10—3 6.064 8.059 7.730 6.211
N 5.211.10—3 5.306 6.081 6.969 7.312 6.335 5.014
[ +0.1 M 8.331-10—2 8.237 7.471 6.536 5.708 4.962 4.638
N 3.124.10-2 3.097 2.870 2.592 2.336 2.078 1.956
0 ~0.1 M 8.327.10~2 8.088 6.135 3.744 1.561 —6.363-10—% | —1.817-10—2
N 3.123.10—2 3.053 2.476 1.764 1.062 2.093.10-8 | —3.476.10—°
0 +0.2 M 8.333.10—2 8.312 8.139 7.931 7.782 7.761 7.865
N 3.125.10—2 3.119 3.068 3.008 2.973 3.012 3.108
0 —0.2 M 8.325-10—2 8.014 5.467 2.349 —5.127.10-3 | --3.435-10~2 | -—5.045-10—2
N 3.123.10—2 3.031 2.279 1.349 4.254.10-3 | —7.250.10—% | —1.400.10~2
0 40.5 M 8.334.10-2 8.535 10.143 12.119 14.003 16.158 17.547
N 3.127-10—2 3.184 3.659 4.252 4.884 5.815 6.563
0 —0.5 M 8.319.10-2 7.791 3.463 —1.839.10—2 —6.734.10—2 | -—1.183.10—1| —1.473-10~1
N 3.121.10—* 2.965 1.687 1.050.10—3 —1.485-10—2 | —3.528.10—2| —4.955-10—2
o2 +0.1 M 5.000- 10—2 4.985 4.868 4.722 4.577 4.406 4,322
N 2.083.10~% 2.079 2.044 2.000 1.949 1.874 1.835
o2 | —o1 M 4.996.10—2 4.836 3.532 1.931 4.994.10-% | —1.192.10-2| —2.133.10-2
N 2.082. 102 2.035 . 1.650 1.171 6.752. 102 5.293-10—5} —4.688.10~3
02 | 402 | M 5.001- 10-2 5.060 5.536 6.118 6.650 7.905 7.549
N 2.084.10—2 2.101 2,241 2.415 2.586 2.808 2.987
0.2 0.2 M 4.994.10—2 4.762 2.864 5.352.10—3 —1.644.10—2 1 —3.991.10—%| --5.360.10—*
N 2.082.10—2 2.013 1.453 7.564-10—2 3.819-10—%| —9.290.10—3%| —1.621.10-2
0.2 0. M 5.007.10—2 5.283 7.540 10.305 12.871 15.602 17.231
+0.5 N 2.085. 102 2.167 2.833 3.659 4.500 5.611 6.442
72—_ ~0. M 4.988.10—2 4.539 8.599-10—2 —3.652-10—2 —7.865-10-2 | —1,239.10-1 —1.504.10~*
5 N 2.080.10—2 1.947 8.610-10—3 —4.875.10—2 —1.875.10-2 | —3.732-10—%| —5.076.10—2
_64_- 0.1 M 1.668.10—2 1.733 2.265 2.909 3.445 3.850 4.006
+ N 1.042.10—2 1.06! 1.218 1.408 1,562 1.670 1.714
0.4 —0.1 M 1.665.10—2 1.585 9.292.-10-3 1.174.10—8 —-7.020-10-3| —1.748.10-8| —2.448.10-2
0 N 1.041.10~2 1.017 8.239-10—2 5.785-10-2 2.879-10-3| —1.988.10-3| —5.899.10—2
0.4 0.2 M 1.670-10—2 1.808 2.935 4.305 5.519 6.649 7.233
+ N 1.043.10—2 1.083 1.416 1.822 2.199 2.604 2.866
. —~0.2 M 1.663.10—2 1.510 2.612.10—2 1.278.10~2 | —2.776.-10—% | —4.547-10—2| —5.676.10—3
04 0 N 1.040.10-2 9.955-10-% 6.267.10—3 | 1.639.10—8 —3.490. 108 [ —1.133.10—2} —1.742.10—%
0. M 1.676.10—2 2.031 4.937 8.492 11.740 15.050 16.916
04 +05 N 1.044.10—2 1.149 2.007 3.066 4.110 5.407 6.321
"o —0. M 1.657.10~2 1.287.10—%| —-1.743. l‘()—2 —5.466. 102 —8.,997-10—2%| —1.294-10—1| —1.536.10*
04 05 N 1.039-10—2 9.296-10—3 3.500.10—4 —1.080.10-3 -2.260.10-2 | —3.936.10—2} -—5.197.10—1
I
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Fig. 1, Temperature distribution at 7y, = 7y: a) at € =0,2; b) 0.3; ¢) 0.4; d) 0.5. The
figures on the curves are values of z,
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Fig. 2. Temperature distribution at & =0,2: a and b) at 7y — 7y, =0.2 and —0.2; ¢ and
d) Tg ~ Ty =0.5 and 0,5, The figures on the curves are values of z,
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we write the solution of (15) in the form
R N\
g, =— ) A; exp (— M2) @; (p), (16)

i=]

where Aj are constants, Aj eigenvalues, and & eigen-
functions of the problem which, as it is easy to show,
satisfy the orthogonality condition

1

(1 —p»p0,0;dp = 0. (17)
0

The general solution of Eq. (12) then assumes the
form

g = ~§ A;exp(—A2) @, (o) +
1

( (18)
To— Ty

+ {—-m +o(l—p')—4e (1 —p?)

The eigenvalues Aj and eigenfunctions &; for the
given problem are known, and the constants Aj are
found on the basis of Eq. (18) for the boundary condi-
tion z = 0 starting from the orthogonality conditions

1 1
[ —pypw,dp flo—p*—p" + o) 0dp
A= x
J (1 —p?)p@idp [ —p)p0idp
N ¢
1
o § (—3p+ 70" —50° + o) @ dp
x T ; — X
(TO——TW) 4 5 2
: f(l—p)pcbidp
0
1 (19)
(TO‘—’TW)
. " 3 1
A‘-=[——Ai+Ai“+8A; ————*~] (20)
(19— 174) (o —Ta)

Returning to the original manner of expressing the
relative temperature, we obtain the final solution

(T—1y) = — (45 (tg— t) + A7 +e 4] x
X exp (— 2 D, (p) +
+% (1 + €) (1 — g —de (1 — p?]. 21)

When the wall temperature is equal to the tempera-
ture of the liquid at the inlet to the heat transfer sec-
tion, Eq. (21) becomes

() = — YA oA ) exp(—12) Do) +
fa=1

+;—m 4 ) (1 —p%) —4e(1 — p)]. (22)

Moreover, for an incompressible liquid we obtain

()= — 3 AP (=12 () + - (1—ph. (29
=1
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Fig. 3. Mean temperature of liquid: 1) calculated;
2) determined experimentally; T in °C, p in atm abs.

The last equation is identical to Brinkman's equation
[7]. In the case of large values it leads to Hersey's
simplified solution [2].

B. Wall temperature varies linearly. In this case
the following boundary conditions hold:

d
ve s 26, 0=0, (5] =0,
-

(1, & =9, =eqz (24)

Now by the relative temperature ¢ we understand
the temperature rise above the initial temperature of
the liquid:

O = 1T—1
Introducing into Eq. (8) the new variable
A=d—G9,=0—az (25)

and, moreover, setting a = 4q, we arrive at the equa-
tion

aA 1 3 [ 8A
1l—p S8 o 2 9 (92,
(== ap(.oap)r
+4[(1 +e)p*—2(1 —p?) —e]. (26)

with the boundary conditions

Afp, 2 Alp, 0)=0, (a_A) ~0:

P Je=0

A(l, 0)y=0. 27

As before, the generalsolution may be represented
as a sum of two functions:

A=A +A,, (28)
A being the solution for 9A/0z = 0.
The general solution has the form

©

A= — 2 A exp(—A2) ®; (p) +

i=1

+~;‘1~[(1+e+2>(1—p4>—4<e+2>(1~p‘2>1. (29)
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The constants Ay are determined by the method pre-
viously employed:

1
f(p—pa—p5+p7),tbidp
0

{1 —pyp0idp
0
1
, §(~39+793-—5p5+p’)®5d9
€ 0
iy ! *
{0 —pnpoido
[}
1
) §(—30 +70°—5p* + ) @, dp
+T0 : | (30)
{1 —p3 p0idp
0
Setting
A=A +e A +247, (31)

we arrive at the final form of the solution:

8= — DA+ A 424 Y exp(— k) Oy 0) +

i==1
+ i—m o2 —pf)— 4o+ 2) (1 — )] + 422 (32)

The constants A] and A{', the eigenvalues }j, and
the eigenfunctions $; remain as in the previous exam-
ple.

For g =0, i. e., for constant wall temperature
equal to the temperature of the liquid at the inlet, Eq.
(32) becomes identical with Eq. (22).

Calculation of temperature distribution. The con~
stants Aj and A{ in (21) are the characteristic quan-
tities of the classical Gritz problem. The numerical
values of these coefficients are well known and can be
found in the literature. In the subsequent calculations
we have used the eigenvalues Aj and associated con-
stants A determined by Abramovich (and also by
Madejski {19]).

The calculations were made using a digital com-
puter with allowance for the first four eigenfunctions.
Values of A and Aim were determined from Eq. (19).
The results of the calculations are presented in Table
1 (the first two columns give Abramovich's values).

Using the above values of Aj and Aj, on the basis of
Eqs. (21) and (22) it is possible to determine the tem-
perature profile for a cross section of the channel
represented by a certain transformed variable length
z. Tables of values of & for the first four eigenfunc-
tions, calculated for p = 0.05, are presented in [20].

The results of calculations for a capillary with con-
stant wall temperature have been graphically repre-
sented in the form of the relationship between (1 — 7y)
and p for various values of z. Figures 1 and 2 show
the temperature distributions for several values of &*
Obviously, the negative thermal effect of expansion

*Curves for other values of € and temperature drops
(m — Ty) are presented in [20].
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reaches a maximum on the axis, and the positive ef-
fect of the heat of {riction at the channel wall. The po-
sition of the temperature maxima relative to the chan-
nel axis depends on the parameter &, Typical is the
formation of an identical temperature distribution pro-
file irrespective of the wall temperature, i. e., ir-
respective of whether it is kept atthe inlettemperature,
cooled, or heated.

CALCULATION OF MEAN TEMPERATURES

The mean relative temperature at a given section
can be calculated from the equation

1 1

! a
s, =4§ﬁ(l—p2)pdp=4 [[esap—podo]. (39
0

o

0

Both the integrals in this equation were calculated
and tabulated for capillaries with constant wall tem-
perature.

Table 2 serves for calculating the mean tempera-
ture from Eq. (33). The following notation has been
used:

1
M=§pﬁdp; N
0

Il
s
=}
[
=
au
=4

The values of M and N in the table are given as func-
tions of the parameters g, {p — Ty)» 2-

In using the table it is necessary to check the extent
to which the length of the capillary exceeds the length
of the acceleration (inlet) section:

X
— 3 0.029Re.
R > Re

On the basis of this relation and Eq. (6) we obtain

the corresponding condition for the fransformed length:
0.058
z .
> Pr

Since the symbol 4 under the integral sign is under-
stood as the difference (p — 7y,)in accordance with Eq.
(21), in order to determine the actual temperature of
the liquid it is necessary to add to the calculated value
Tw for a capillary with a constant arbitrary wall tem-
perature or 7 in the case 7 = 7¢-

EXPERIMENTAL

The theoretical calculations of the mean temperature
of the liquid (based on Egs. (33 and (21), were checked
experimentally for a capillary with constant wall tem-
perature. The measurements were made in an apparatus
consisting of a heating tank and a thermostated capil-
lary [20].

In the experiments we used castor oil flowing
through a brass capillary of diameter dy = 0.216 cm,
wall thickness 0.04 cm, and length L = 36.6 cm cooled
externally by a rapid isothermal flow of water.

In this case it may be assumed that the liquid flows
through the capillary at constant wall temperature equal
to 7y, The oil was collected in a dewar flask, and the
temperature was measured directly with a thermom-
eter correct to 0.1° C. Small linear jet velocities
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were selected, in order to eliminate corrections for
the influence of kinetic energy in the measured ther-
mal effect.

Under the experimental conditions the physical
properties of the oil were as follows:

(P e A 1 cp
10.9—12.65 0.2 1.81-10¢ 0.962  2.15.107

The remaining experimental parameters were
varied within the following limits: expulsion pressure
(1.96-7.85) * 10" dyne/cn® (20~80 atm abs), relative
length z = 0.00473-0.0189, relative difference (rq —
- ‘rw) = 0.440-0.0061.

The mean relative temperature was determined
from Eq. (33) using calculated and tabulated integrals

1

1
Sp%dp and J.p‘*ﬁdp.
0 [}

The results were graphically interpolated (correct
to three places). Having determined the mean relative
temperature Jp for the required values of the param-
eters Ty and {rg — Ty}, we then calculate the mean
temperature Ti,.

The calculated curves of Ty as a function of pres-
sure (i. e., essentially as a function of the shear
stresses) and the points representing the results of
the measurements are presented in Fig. 3.

The discrepancybetweenthe theoretical and experi-
mental curves can be explained if it is kept in mind
that the postulate of constant wall temperature was
realized only approximately (clearly, in practice the
wall temperature was higher than the temperature of
the cooling water). Determination of the mean tem-
perature using the tables presented above makes it
possible to develop a practical method suitable, for
example, for estimating the magnitude of the thermal
effects in capillary viscomeiry.

NOTATION

Aj are constants; ¢y, is the isobaric specific heat;
D/D¢ is the total derivative; Gz is the Griitz number;
L is the length of capillary; M is the value of integral;
N is the value of integral; p is the pressure; P is the
pressure drop; q is the constant; R is the radius of
cagpillary, r is the variable radius; T is the tempera-~
ture, °C; t is the temperature rise relative to the ref-
erence temperature; t is the time, sec [sic]; Ty, is the
mean temperaturc; v is the specific volume; V is the
velocity in axial direction, cm/sec; x stands for coor-
dinates along channel axis, length, cm; z is the trans-
formed (relative) length (Eq. (6)); g is the coeffi~
cient of thermal expansion; v is the density; 7 is

161

the transformed (relative) temperature (Eq. (7));

7o is the transformed initial temperature; 7y is the
transformed wall temperature; € is the product Tp:
¢ is the transformed temperature (Eg. (10)); 4§ is
the transformed temperature rise; ¥}, is the mean
transformed temperature; A is the thermal conductiv-
ity; A are eigenvalues; p is the viscosity; p is the
transformed radius; A is the transformed temperature
(Eq. (25)); ® are eigenfunctions, dissipation functions;
Y are eigenfunctions.
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